MULTIPLE POSITIVE SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple positive solutions for functional dynamic equations on time scales

This paper is concerned with the existence of multiple positive solutions for a functional dynamic equations with multi-point boundary conditions on time scales by using fixed point theorems in a cone. As an application, we also give an example to demonstrate our results.

متن کامل

Three Positive Solutions for p-Laplacian Functional Dynamic Equations on Time Scales

In this paper, existence criteria of three positive solutions to the followimg p-Laplacian functional dynamic equation on time scales { [ Φp(u (t)) 5 + a(t)f(u(t), u(μ(t))) = 0, t ∈ (0, T ) , u0(t) = φ(t), t ∈ [−r, 0] , u(0)−B0(u (η)) = 0, u(T ) = 0, are established by using the well-known Five Functionals Fixed Point Theorem.

متن کامل

Multiple positive solutions of nonlinear m-point dynamic equations for p-Laplacian on time scales

In this paper, we study the existence of positive solutions of a nonlinear m -point p -Laplacian dynamic equation (φp(x (t))) + w(t)f(t, x(t), x(t)) = 0, t1 < t < tm, subject to one of the following boundary conditions

متن کامل

Three Positive Solutions for P-laplacian Functional Dynamic Equations on Time Scales

In this paper, we establish the existence of three positive solutions to the following p-Laplacian functional dynamic equation on time scales, [Φp(u ∆(t))]∇ + a(t)f(u(t), u(μ(t))) = 0, t ∈ (0, T )T, u0(t) = φ(t), t ∈ [−r, 0]T, u(0)−B0(u(η)) = 0, u(T ) = 0, . using the fixed-point theorem due to Avery and Peterson [8]. An example is given to illustrate the main result.

متن کامل

Positive Solutions for Third-Order p-Laplacian Functional Dynamic Equations on Time Scales

Let T be a closed nonempty subset of R, and let T have the subspace topology inherited from the Euclidean topology on R. In some of the current literature, T is called a time scale or measure chain . For notation, we shall use the convention that, for each interval of J of R, J will denote time scales interval, that is, J : J ∩ T. In this paper, let T be a time scale such that −r, 0, T ∈ T. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2008

ISSN: 1027-5487

DOI: 10.11650/twjm/1500405182